PROVIDENCE COLLEGE

Department of Chemistry

Army Specialized Training Program.

Chemistry: ASTP-205

Time, per week: 2 hours lecture, 1 hour class, 3 hours outside study.

Text: Foster-Alyea: An Introduction to General Chemistry, Van Nostrand, 1942 printing. The numbers given below refer to sections, not pages.

FIRST WEEK

1st Lecture: Elements and Compounds Elements, Compounds and Mixtures (10-14). Atoms and Molecules (15-17).

2nd Lecture : Equations Symbols, formulas, nomenclature (18-20). Physical and Chemical Changes (21-26).

Assignment :-- Problem Sheet No. 1 (due at Class period of next week).

SECOND WEEK

1st Lecture: Oxygen and Hydrogen History, occurrence, preparation and properties of oxygen 28, (29, 30 read only) 31-35. Oxidation and Combustion (36-42 read only). History, occurrence, preparation and properties of hydrogen 45-50, (51, 52 read only).
2nd Lecture: Valence

Valence and Symbols (54-56). Nomenclature of elements and compounds (57-58).

Assignment:-Problem Sheet No. 2 (due as above at 1st Lecture of next week).

THIRD WEEK

1st Lecture :	Water Composition of water by weight and by volume (61-62). (63-66 read only). Vapor pressure (67-69). (70-73 read
2nd Lecture :	Gas Laws Boyles', Charles' and Dalton's Laws (74-82) (83- read
	only). Diffusion of Gases, Graham's Law (84). Liquid and solid states of matter (85-90). (91-94 read only).
Assimumonts	Dashlam Chast No. 2

Assignment :-- Problem Sheet No. 3.

FOURTH WEEK

Ist Lecture:	Kinetic Molecular Theory
	(95-100) (Skip mathematical derivations in sections 96 and
	97). This lecture to be supplemented by a motion picture :
	"Molecular Theory of Matter."
2nd Lecture :	Chemical Laws and Calculations
	Laws of Conservation of Mass, Definite Proportions, Mul-
	tiple Proportions, Equivalent Weights, Combining Volumes
	(102-106) Chemical Calculations (107-111).

Assignment :-- Problem Sheet No. 4.

FIFTH WEEK

1st Lecture:	Atomic and Molecular Weights
	Determination of Approximate Atomic and Molecular
	Weights (112-119) (118, 119 read only). Determination of
	Exact Molecular and Atomic Weights (120-123).
2nd Lecture :	Acids, Bases and Salts

Metallic Oxides—Bases (126-130, 139-141). Non-metallic Oxides—Acids (131-138, 142-146). Salts (125, 148-151).

Assignment :-- Problem Sheet No. 5.

SIXTH WEEK

1st Lecture: Solutions of Non-electrolytes

Types of Solutions (152, 153). Temperature and Pressure Effects on Solubility (154-157). Molar and Normal Solutions (160-161). Saturated and Supersaturated Solutions (162). Effect of Concentration on Freezing Point, Boiling Point, Vapor Pressure and Osmotic Pressure (162-167).

2nd Lecture: Solutions of Electrolytes Arrhenius Theory of Ionization (168-170). Electrical Evidence for Ionization (171-175). Chemical Evidence for Ionization (176-181). Colligative Evidence for Ionization (182-184). This lecture to be supplemented by a motion picture, "Electrochemistry,"

SEVENTH WEEK

1st Lecture : Degree of Ionization

Apparent Degree of Ionization (Arrhenius) (185). Debye-Huckel Theory (187). (186, 188 read only). Hydrogen Ion Concentration) pH (232). Indicators (147, 236).

Energy & Chen. Change

2nd Lecture: Time devoted to Uniform Test on all matter to date. Assignment:-Problem Sheet No. 6.

EIGHTH WEEK

1st Lecture:	Equilibrium
	Rate of Chemical Reaction (207-208). Chemical Equi-
	librium and the Principle of Mass Action (209-217). This
	lecture to be supplemented by a motion picture: "Velocity
	of Chemical Reactions."
2nd Lecture :	Ionic Equilibrium
	Ionization Constant, Solubility Product, Common Ion Effect
	(219-222). Completed Ionic Reactions (223-225). Catalysis
	(33, 218). This lecture to be supplemented by a motion
	picture : "Catalysis."

Assignment :- Problem Sheet No. 7.

NINTH WEEK

1st Lecture:	Nuclear Structure of the Atom Introductory (55c, 238, 239). Units of Structure (240-242). Isotopes (243-245).
2nd Lecture :	Radioactivity. Historical (246-247). Nature of Radioactivity (248-253). Radioactive Indicators and Artificial Radioactivity (254- 259).

Assignment :- Problem Sheet No. 8.

TENTH WEEK

1st Lecture: Planetary Structure Electrovalent and Covalent Bonds (264-266). (Omit 260-263). Electronic nature of Oxidation and Reduction (59, 226-228). Balancing of Redox Equations (134).
2nd Lecture: Periodic Classification of the Elements
2nd Lecture: Periodic (279-283). Basis of the Classification (284-286). Assignment:—Problem Sheet No. 9.

ELEVENTH WEEK

1st Lecture: Application of the Periodic Classification, the Helium Group General Relationships (274), Helium (276), Argon (275), Neon, Krypton and Xenon (277). Radon (278). The Atmosphere (267-273 read only).

N.B. The Class hour each week will be devoted to quizzing and answering trainee's questions. Trainees are responsible for all matter to date.