COwGRessyowh bxswaxce of Rtione xsuavb AT sxcond nowri
1962 AF 9 AM

The invitation you have extended me to alscuss the problems and opportunities of medicine -- as a Congressman views them -- is deepiy appreciated.

Like many othe things in mealcal pxactice today. you zepresent sonething relatively news a eraft and skill forged fxom the advances of scientific medicine -advances which in the past 25 years have made this Nation a world leader in medical research.

This is something in which we all take considerable pride. We know that American medicine is helping to bring better health to people everywheres and we know that in this task American physleians and scientists have the strongest backing in the worlds the medical technologists whose skills and careEul training make possible the practice of scientific medicine.

As a group you medical technologists scarcely existed a generation ago. Your real growth and developrent cane in the postwar period and has closely paralleled the advance of scientific Jenowledge and its application to neaical practice.

This has been a heartening development. In my view, it means that broad support of research eventually pays aividends, and in a form we can all understands better medical care and improved health for all our citizens.

The accelexation of progress in all fields of science has been so rapid in oux lifetime that many of us have difficulty grasping its meaning and assessing its impact on our lives. In a recent address betore the National Health Forum in New York, General David sarnoff, Chairman of the noard, Radio corporation of America made this illuminating observation of science and where it is taking us:
"Science 1900," Sarnoff declared, "there has been more scientific and rechnological progress than in all the previous centuries of recorded history and this progress is proceeding at an ever accelexating pace. Developments that once would have required many scientific lifetimes are now compressed into a few months. It took hals a century to move from mechanical office machines to modern computersy but it took less than a decade to increase the speed of these computers a thousandfold. It took 40 years -
from the Wright brothers to the second World War to push shying speeds up to 500 miles an houry but less than 15 years to go Erom 500 miles to $\mathbf{2 8 , 0 0 0}$ males an hour at which manmade satellites now circle the globe.
"How profoundly the world has altered in these 15 years. A hermit emerging today from a 1946 refinge would never have heard of earth and solar satellites or atomie reactors. Automation would be an alien word. He would never have slown in a jet plane or seen the inside of a glass-walled building. He would never have watched color television or listened to stereophonic music."

Yes, the world is indeed changing. And the practice of medicine with it.

When I was a boy a physician had pltifully sew weapons with which to combat a serious illness. A fulminating infection trequently brought swift death In those pre-penicillin days. cancer diagnosis and treatment were crude, primitive, and often too late to benefit the patienty heart disease was so poorly understood that cases of heart attack were often passed off as "acute indigestion." zot infrequently, a physician could best serve his patient by leaving him alone and by making sure no obstacles were placed in tature's way.

$$
-4-
$$

And today Well, the odds have changed - rather epectacularly. The 1ifo apan of the average American has increased to slightyy more than 70 years. At the turn of the century it was only 47. Largely by redueing the high aeath rate trom inteetions in intaney and early chilahood, we have added almost a quartercentury to the 11fespan of our people.

With the develogment of new laboratory techniques, the practice of medicine in recent years has undergose steady change. fiyaicians formerly dependent on the groas impressions of the five senses could now turn to the preciaion tools of the laboratory for help in aiagnosing and treating disease. Noxe than ever, the practicing physician has becone dependent on the highly skilled services of the seientists and supporting technologists.

The gaine we have made in the postwar period are only the begianing. We stand at the threshhold of a new age in which medicine"s scieatific base will provide the underpinninge for all the health proitessions.

I am contlaent that the broad support we have given selence will lead to increasingly effective control over
maintenance of health. What we have accomplished in the first half of the century in safeguarding the iives of children will be matched in the second half by equally ixpressive gains on the other end of the age spectrum.

As we learn more about the chemical and physical basis of life, we will be able to predict changes in health and to alter or prevent such changes. The medicine of the fucure will truly be preventive medicine. We will learm how to attenuate the aging process and how to support man against the encroachment of his envirorment.

To accomplish these objectives we will require in the practice of medicine a high degree of sophistication and an increasing reliance on supportive stills auch as you who are gathered here today represent.

3 think we can all take satisfaction in the knowledge that the field of medical technology has reached its high level in the united States and its sister nations in the western hemisphere. Nuch of the credit for this belongs with the American Society of tuedical Technologists and the Canadian society of zaboratory rechnologists, These groups, together with sister organizations in latin America, have tone much to trprove standards of education and training in this area of elinical medicine.

We hear much these days about automation and the changes it is producing in our economy. Many of you are wondering, no doubt, how automatic data processing will affeet your field and whether your careers will be adversely influanced.

On this score I think you have nothing to fear. Automatic data-processing will relieve many of you of the drudgery of routine, repelitive tasks, thus enabling you to kurn your attention to more creative aspects of laboratory work. Iotal output in an automated laboratory will increase markedly, and this expansion will require more people, not less. In short, automation will serve to Increase the availability of your services and to emhance your value to clinical medicine.

I shoula like to turn now to some of the broader problems of medicine which vitally affect all of you. as members of a health profession, I need not tell you America needs more phyeicians and more people in all the ancillary services of medicine. The population of the United states is growing rapialy. The output of health professionals will have to rise more rapidly than it has since World war x simply to avold a drop in the number of physicians per 100,000 population.

The Bane Regort. Rhysicians for a growing America, has pointed out that "over the nest decade the population is expected to increase by more than 3.5 milison a year. with growth proportionately greater among old people and children who reguire more medical care . . Aside from the need of our people for personal medical services, a continuing and increasing supply of physicians must also be assured for research, teaching, industry, public health, and other essential functions."
". . To maintain the present ratio of physicians to population," the report states, "will require an increase in the graduates of schools of medicine and osteopathy from the present 7,400 to about $\mathbf{1 1}, 000 \mathrm{by}$ 1975. This means a needed additional production of 3,600 graduates annually.

Well, who will supply the money to build and operate the equivalent of 20 new medical schools to turn out these physicians? I think the answer is clear. unless rederal funds are grovided, the job will not get done. There is In truth no practical possibility that the output of physielans can be substantialiy Increased without extensive Federal ald.

To this end, I have introduced in congress three bills to deal with each of the three categozies of needs grants for construction of new faclilitios, grants zor general operating expenses, and funds for scholarships to attract and to aid students. The general teatures of the three bills have been consolldated in a single bi11 - R.R. 4999 - introduced by Congressman Harris and supported by the Administration. The bill would make available a total of $\$ 750$ million in Federal funds over the next decade for construction of new, and for rehabilitation of old, professional schools. It would ultimately provide about $\$ 17$ million per year for ccholarahips amounting to a maximum of $\$ 2,000$ per year to gualified and needy students. It would provide $\$ 1,000$ per year per student receiving a scholarship to each school for general operating expenses.
closely related to the urgent problem to training more physicians is the need for realistic measures to meet the research manpower shortage in the decade ahead.

In a report prepared for Congress, the wational Institutes of Health estinates that total national expenaitures for meaical research will wise to $\$ 3$ billion a year in 1970. This is about three times the current effozt.

Obviousiy, a national progran of this size will involve not only a rapid expansion of tacilities and equipment for heaith research, but also an unprecedented increase in the output of trained investigators physicians and Ph.D."s in the sciences, plus supporting personnel.

The report states that the number of competent personnel raust double over the coming decade in order to staff a progran three times the size of the cursent effort. This calle for an increase in medical research manpower from the current level of about 40,000 to about 80,000 in 1970.

This anticipated increase seems altogether roasonable in view of the facts that the number of professional woricers engaged sull or part-time in medical sescarch jumped from 19,000 in 1954 to almost 40,000 in 1960 -- moxe than a

100 percent increase. During this period, more and moze $\mathrm{M} . \mathrm{D}$."s sought to combine research with teaching or sexvice zesponsibilities. partieipation of Fh.D.trained manpower also rose rapldly, accompanied by the growing involvement of the physical and social and behavioral sciences in medical research.

If the needed manpower for medical research in the decade ahead is to be produced, the report states, we must retain all of the existing mechanisms, modifying then there such action is appropriate. Additional measures, directed mainly at expanding the total pool of trained manpower, are indicated if we are to enlarge the manpower supply for the long run. these aren

1. Espand college matriculation, especially among more talented, less privileged youth.
2. Enlarge graduate enrollment in all slelds, but especially in tields most direetly relevant to nedical research.
3. Increase the number of medical students as rapidiy as possible to neet all the health needs of the Mation.
4. Accelerate the output of ph.D. ${ }^{\text {" }} \mathrm{s}$
5. orient the wation's youth towaxd the exciting challenges and rewarding caxeex opportunities in blology and medictine.

I need not point out to this audience that the manpower recquirements outlined here will have a vital bearing on clinical medicine in the $1960^{\circ} \mathrm{s}$ and on the increasing important role which medical technologists will play in bringing to all Americans the higher standards of health and medical care which are their just due. I wish you well in this important task.

